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LLNL has a long history of R&D in ODE/DAE 
methods and software

� Fortran solvers written at LLNL:
—VODE: stiff/nonstiff ODE systems, with direct linear solvers
—VODPK: with Krylov linear solver (GMRES) 
—NKSOL: Newton-Krylov solver - nonlinear algebraic systems 
—DASPK: DAE system solver (from DASSL)

� Recent focus has been on parallel solution of large-scale 
problems and on sensitivity analysis



Push to solve large, parallel systems motivated 
rewrites in C

� CVODE: rewrite of VODE/VODEPK [Cohen, Hindmarsh, 94]
� PVODE: parallel CVODE [Byrne and Hindmarsh, 98]
� KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
� IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
� Sensitivity variants: SensPVODE, SensIDA, SensKINSOL

[Brown, Grant, Hindmarsh, Lee, 00-01]
� New sensitivity-capable solvers:

— CVODES [Hindmarsh and Serban, 02]
— IDAS – in development

� Organized into a single suite, SUNDIALS, including CVODE 
and CVODES, IDA, KINSOL, and soon IDAS



The SUNDIALS package offers Newton solvers, 
time integration, and sensitivity solvers

� CVODE: implicit ODE solver, y’ = f(y, t)
— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
— Nonlinear systems solved by Newton or functional iteration
— Linear systems by direct (dense or band) or iterative solvers

� IDA: implicit DAE solver, F(t, y, y’) = 0
— Variable-order, variable step BDF
— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

� KINSOL: Newton solver, F(u) = 0
— Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solvers

� CVODES: sensitivity-capable (forward & adjoint) CVODE 
� IDAS: sensitivity-capable (forward & adjoint) IDA 
� Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR



� Philosophy: Keep codes simple to use
� Written in C

—Fortran interfaces: fcvode, fida, and fkinsol
—Matlab interfaces: sundialsTB (cvodes and kinsol)

� Written in a data structure neutral manner
—No specific assumptions about data
—Application-specific data representations can be used

� Modular implementation
—Vector modules
—Linear solver modules

� Require minimal problem information, but offer user 
control over most parameters

SUNDIALS was designed to easily interface 
with legacy codes



Initial value problems (IVPs) come in the form 
of ODEs and DAEs

� The general form of an IVP is given by
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� If              is invertible, we solve for    to obtain an ordinary 
differential equation (ODE)

� Else, the IVP is a differential algebraic equation (DAE)

� A DAE has differentiation index i if i is the minimal number 
of analytical differentiations needed to extract an explicit 
ODE
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Stiffness of an equation can significantly 
impact whether implicit methods are needed

� (Ascher and Petzold, 1998): If the system has widely 
varying time scales, and the phenomena that change on 
fast scales are stable, then the problem is stiff

� Stiffness depends on
— Jacobian eigenvalues, λλλλ j

— System dimension
— Accuracy requirements
— Length of simulation

� In general a problem is stiff on [t0, t1] if
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Dalquist test problem shows impact of stability 
on step sizes for explicit and implicit methods

Dalquist test equation: 
Exact solution: 

Absolute stability requirement 

Reason: If Re(λλλλ)<0, then |y(tn)| decays exponentially, and we 
cannot tolerate growth in yn

Region of absolute stability: 
where an integrator can be written as yn = R(z)yn-1, with time 
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Forward and backward Euler show different 
stability restrictions

� Forward Euler:

So, if λλλλ < 0, FE has the step size restriction:

� Backward Euler:

So, if λλλλ < 0, BE has the step size restriction:
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Curtiss and Hirchfelder example
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Curtiss and Hirchfelder example
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SUNDIALS has implementations of Linear 
Multistep Methods (LMM)

� Two methods:
— Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12
— BDF (stiff); K1 = k, K2 = 0, k = 1,…,5

� Nonlinear systems (BDF)
— ODE: 

— DAE: 

General form of LMM: ∑∑∑∑ ∑∑∑∑
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Stability is very restricted for higher orders of 
BDF methods
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CVODE solves y’=f(t,y)

� Variable order and variable step size methods:
— BDF (backward differentiation formulas) for stiff systems
— Implicit Adams for nonstiff systems

� (Stiff case) Solves time step for the system
— applies an explicit predictor to give yn(0)

— applies an implicit corrector with yn(0) as the initial guess
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Time steps are chosen to minimize the local 
truncation error

� Time steps are chosen by:
— Estimate the error: E(∆∆∆∆t ) = C(yn - yn(0))

–Accept step if ||E(∆∆∆∆t)||WRMS < 1
–Reject step otherwise

— Estimate error at the next step, ∆∆∆∆t’, as

— Choose next step so that ||E(∆∆∆∆t’)|| WRMS < 1
� Choose method order by:

— Estimate error for next higher and lower orders
— Choose the order that gives the largest time step meeting 

the error condition
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Computations weighted so no component 
disproportionally impacts convergence

� An absolute tolerance is specified for each solution 
component, ATOLi

� A relative tolerance is specified for all solution 
components, RTOL 

� Norm calculations are weighted by:

� Bound time integration error with:

The 1/6 factor tries to account for estimation errors
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Nonlinear system will require nonlinear solves

� Use predicted value as the initial iterate for the nonlinear 
solver

� Nonstiff systems: Functional iteration

� Stiff systems: Newton iteration

— ODE: 

— DAE:
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SUNDIALS provides many options for linear 
solvers

� Iterative linear solvers
— Result in inexact Newton solver
— Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
— Only require matrix-vector products
— Require preconditioner for the Newton matrix, M

� Jacobian information (matrix or matrix-vector product) can 
be supplied by the user or estimated with finite difference 
quotients

� Two options require serial environments and some pre-
defined structure to the data

— Direct dense 
— Direct band



An inexact Newton-Krylov method can be used 
to solve the implicit systems

� Krylov iterative method finds linear system solution in 
Krylov subspace:

� Only require matrix-vector products
� Difference approximations to the matrix-vector product are 

used,

� Matrix entries need never be formed, and memory savings 
can be used for a better preconditioner
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IDA solves F(t, y, y’) = 0

� C rewrite of DASPK [Brown, Hindmarsh, Petzold]
� Variable order / variable coefficient form of BDF
� Targets: implicit ODEs, index-1 DAEs, and Hessenberg

index-2 DAEs
� Optional routine solves for consistent values of y0 and y0’ 

— Semi-explicit index-1 DAEs, differential components known, 
algebraic unknown OR all of y0’ specified, y0 unknown

� Nonlinear systems solved by Newton-Krylov method

� Optional constraints: yi > 0, yi < 0, yi ≥≥≥≥ 0, yi ≤≤≤≤ 0



KINSOL solves F(u) = 0

� C rewrite of Fortran NKSOL (Brown and Saad)
� Inexact Newton solver: solves J ∆∆∆∆un = -F(un) approximately
� Modified Newton (with direct solves) – this freezes the 

Newton matrix over a number of iterations
� Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-

CGStab
— Optional restarts for GMRES
— Preconditioning on the right: (J P-1)(Ps) = -F

� Direct solvers: dense and band (serial & special structure)
� Optional constraints: ui > 0, ui < 0, ui ≥≥≥≥ 0 or ui ≤≤≤≤ 0
� Can scale equations and/or unknowns
� Dynamic linear tolerance selection



1. Starting with x0, want x* such that F(x*) = 0

2. Repeat for each k until

a. Solve (approximately)

b. Update, xk+1 = xk + λλλλsk

An inexact Newton’s method is used to solve 
the nonlinear problem
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� tol may be chosen adaptively 
based on accuracy 
requirements 

� λλλλ is a search parameter
� ||.|| is a weighted L-2 norm



Linear stopping tolerances must be chosen to 
prevent “oversolves”

� Newton method assumes a linear model 
— Bad approximation far from solution, loose tol.

— Good approximation close to solution, tight tol.

� Eisenstat and Walker (SISC 96)
— Choice 1

— Choice 2

� ODE literature
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Inexact methods maintain the fast rate of 
convergence of Newton’s method

� Convergence of Newton’s method is q-quadratic locally, 
for some constant C

� Convergence of an inexact Newton method is
— q-linear if,      is constant in k

— q-super-linear  if,

— q-quadratic if for some constant C

� Eisenstat and Walker methods are q-quadratic
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Line-search globalization for Newton’s method 
can enhance robustness

� User can select:
— Inexact Newton

— Inexact Newton with line search

� Line searches can provide more flexibility in the initial 
guess (larger time steps)

� Take, xk+1 = xk + λλλλsk+1, for λλλλ 

  

 chosen appropriately (to 
satisfy the Goldstein-Armijo conditions):

— sufficient decrease in F relative to the step length 

— minimum step length relative to the initial rate of decrease

— full Newton step when close to the solution



Preconditioning is essential for large problems 
as Krylov methods can stagnate

� Preconditioner P must approximate Newton matrix, yet be 
reasonably efficient to evaluate and solve.

� Typical P (for time-dep. problem) is
� The user must supply two routines for treatment of P:

— Setup: evaluate and preprocess P (infrequently)
— Solve: solve systems Px=b (frequently)

� User can save and reuse approximation to J, as directed 
by the solver

� SUNDIALS offers hooks for user-supplied preconditioning
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Sensitivity Analysis

� Sensitivity Analysis (SA) is the study of how the variation in 
the output of a model (numerical or otherwise) can be 
apportioned, qualitatively or quantitatively, to different 
sources of variation in inputs.

� Applications:
— Model evaluation (most and/or least influential parameters), 

Model reduction, Data assimilation, Uncertainty quantification, 
Optimization (parameter estimation, design optimization, 
optimal control, …)

� Approaches:
— Forward sensitivity analysis
— Adjoint sensitivity analysis



Sensitivity Analysis Approaches

Computational cost:
(1+Np)Nx   increases with Np
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FSA - Methods

� Staggered Direct Method: On each time step, converge Newton 
iteration for state variables, then solve linear sensitivity system
— Requires formation and storage of Jacobian matrices, Not matrix-

free, Errors in finite-difference Jacobians lead to errors in 
sensitivities

� ���� Simultaneous Corrector Method: On each time step, solve the 
nonlinear system simultaneously for solution and sensitivity 
variables
— Block-diagonal approximation of the combined system Jacobian, 

Requires formation of sensitivity R.H.S. at every iteration

� ���� Staggered Corrector Method: On each time step, converge 
Newton for state variables, then iterate to solve sensitivity system
— With Krylov



FSA – Generation of the sensitivity system

� Analytical 
� Automatic differentiation

— ADIFOR, ADIC, ADOLC

— complex-step derivatives

� Directional derivative approximation
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ASA – Implementation

� Solution of the forward problem is required for the adjoint problem 
���� need predictable and compact storage of solution values for the 
solution of the adjoint system

— Cubic Hermite or variable-degree polynomial interpolation
— Simulations are reproducible from each checkpoint
— Force Jacobian evaluation at checkpoints to avoid storing it
— Store solution and first derivative 
— Computational cost: 2 forward and 1 backward integrations

t0t0 tftf

ck0ck0 ck1ck1 ck2 …ck2 …

CheckpointingCheckpointing



ASA – Generation of the sensitivity system

� Analytical 
— Tedious
— For PDEs: in general, adjoint and discretization operators do 

NOT commute
� Automatic differentiation

— Certainly the most attractive alternative
— Reverse AD tools not as mature as forward AD tools

� Finite difference approximation
— NOT an option (computational cost equivalent to FSA!) 



The SUNDIALS vector module is generic

� Data vector structures can be user-supplied
� The generic NVECTOR module defines:

— A content structure (void *)
— An ops structure – pointers to actual vector operations 

supplied by a vector definition
� Each implementation of NVECTOR defines:

— Content structure specifying the actual vector data and any 
information needed to make new vectors (problem or grid 
data)

— Implemented vector operations
— Routines to clone vectors

� Note that all parallelism (if needed) resides in reduction 
operations: dot products, norms, mins, etc.



SUNDIALS provides serial and parallel 
NVECTOR implementations

� Use is, of course, optional
� Vectors are laid out as an array of doubles (or floats)
� Appropriate lengths (local, global) are specified
� Operations are fast since stride is always 1
� All vector operations are provided for both serial and 

parallel cases
� For the parallel vector, MPI is used for global reductions

� These serve as good templates for creating a user-
supplied vector structure around a user’s own existing 
structures



SUNDIALS provides Fortran interfaces

� CVODE, IDA, and KINSOL
� Cross-language calls go in both directions:
� Fortran user code �������� interfaces �������� CVODE/KINSOL/IDA

� Fortran main ���� interfaces to solver routines
� Solver routines ���� interface to user’s problem-defining 

routine and preconditioning routines

� For portability, all user routines have fixed names
� Examples are provided



SUNDIALS provides Matlab interfaces

� CVODES, KINSOL, and (next release) IDA
� The core of each interface is a single MEX file which 

interfaces to solver-specific user-callable functions
� Guiding design philosophy: make interfaces equally familiar 

to both SUNDIALS and Matlab users
— all user-provided functions are Matlab m-files
— all user-callable functions have the same names as the 

corresponding C functions 
— unlike the Matlab ODE solvers, we provide the more flexible 

SUNDIALS approach in which the 'Solve' function only returns 
the solution at the next requested output time.

� Includes complete documentation (including through the 
Matlab help system) and several examples



Structure of SUNDIALS

CVODE CVODES KINSOL

SUNDIALS

IDA

DENSE

SPBCGSPGMR

BAND

SPTFQMR

CVDIAG CVDENSE CVBAND

CVSPGMR CVSPBCG CVSPTFQMR IDASPGMR

IDADENSE IDABAND

IDASPBCG IDASPTFQMR KINSPGMR

KINDENSE

KINSPBCG

KINBAND

KINSPTFQMR

PARALLEL

NVECTOR

SERIAL

GENERIC LINEAR SOLVERS

LINEAR SOLVER
INTERFACES

NVECTOR MODULES



SUNDIALS code usage is similar across the 
suite

#include “cvode.h”
#include “cvode_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
for(tout = …) {

flag = CVode(cvmem, …,y,…); }

NV_Destroy(y);
CVodeFree(&cvmem);

� Have a series of Set/Get routines to set options
� For CVODE with parallel vector implementation:



User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

Options
- sensitivity approach (simultaneous or staggered)
- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

Options
- sensitivity approach (simultaneous or staggered)
- sensitivity residuals: analytical, FD(DQ), AD, CS
- error control on sensitivity variables
- user-defined tolerances for sensitivity variables

Forward Sensitivity Analysis in SUNDIALS

Band
Linear
Solver

Band
Linear
Solver

Preconditioned
Iterative

Linear Solver

Preconditioned
Iterative

Linear Solver

General
Preconditioner

Modules

General
Preconditioner

Modules

Vector
Kernels
Vector
Kernels

Dense
Linear
Solver

Dense
Linear
Solver

CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

#include “cvodes.h”
#include “cvodes_spgmr.h”
#include “nvector_*.h”

y = N_VNew*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeMalloc(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
yS = N_VNewVectorArray_*(Ns,…);
flag = CVodeSetSens*(…);
flag = CVodeSensMalloc(cvmem,…,yS);
for(tout = …) {

flag = CVode(cvmem, …,y,…);
flag = CVodeGetSens(cvmem,t,yS);

}
NV_Destroy(y);
NV_DestroyVectorArray(yS,Ns);
CVodeFree(&cvmem);



Adjoint Sensitivity Analysis in SUNDIALS

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function
User reverse preconditioner function

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function
User reverse preconditioner function

(Modified)
Vector
Kernels

(Modified)
Vector
Kernels

Implementation
- check point approach; total cost is 2 forward 
solutions + 1 backward solution 
- integrate any system backwards in time
- may require modifications to some user-defined 
vector kernels

Implementation
- check point approach; total cost is 2 forward 
solutions + 1 backward solution 
- integrate any system backwards in time
- may require modifications to some user-defined 
vector kernels

Band
Linear
Solver

Band
Linear
Solver

Preconditioned
Iterative

Linear Solver

Preconditioned
Iterative

Linear Solver

General
Preconditioner

Modules

General
Preconditioner

Modules

Dense
Linear
Solver

Dense
Linear
Solver

CVODES
ODE

Integrator

CVODES
ODE

Integrator

IDAS
DAE

Integrator

IDAS
DAE

Integrator

#include “cvodes.h”
#include “cvodea.h”
#include “cvodes_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
CVodeSet*(…); CVodeMalloc(…); CVSpgmr(…);

cvadj = CVadjMalloc(cvmem,STEPS);
flag = CVodeF(cvadj,…,&nchk);
yB = N_VNew_*(nB,…);
CVodeSet*B(…); CVodeMallocB(…); CVSpgmrB(…);
for(tout = …) {

flag = CVodeB(cvadj, …,yB,…);
}

NV_Destroy(y);
NV_Destroy(yB);
CVodeFree(&cvmem);
CVadjFree(&cvadj);



Applications of SUNDIALS

� Parallel CVODE is being used in a 3D tokamak turbulence 
model in LLNL’s Magnetic Fusion Energy Division. A 
typical run has 7 unknowns on a 64x64x40 mesh, with up 
to 60 processors

� KINSOL with a HYPRE multigrid preconditioner is being 
applied within CASC to solve a nonlinear Richards’ 
equation for pressure in porous media flows. Fully 
scalable performance was obtained on up to 225 
processors on ASCI Blue.

� CVODE, KINSOL, IDA, with MG preconditioner, are being 
used to solve 3D neutral particle transport problems in 
CASC. Scalable performance obtained on up to 5800 
processors on ASCI Red.



Applications with sensitivity analysis

� SensPVODE, SensKINSOL, SensIDA used to determine solution 
sensitivities in neutral particle transport applications.

� IDA and SensIDA used in a cloud and aerosol microphysics 
model at LLNL to study cloud formation processes.

� SensKINSOL used for sensitivity analysis of groundwater 
simulations.

� CVODES used for sensitivity analysis of chemically reacting 
flows (SciDAC collaboration with Sandia Livermore).

� CVODES used for sensitivity analysis of radiation transport 
(diffusion approximation).

� KINSOL+CVODES used for inversion of large-scale time-
dependent PDEs (atmospheric releases).



Influence of Opacity Parameters
in Radiation-Diffusion Models

� Opacities and EOS are often given 
through look-up tables 
Consider exponential opacities of 
the form

� Problem dimension: Nx = 100, Np = 1
� Find sensitivities of temperatures 

w.r.t. opacity parameters 
(SensPVODE)
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Influence of Relative Permeability Parameters in 
Groundwater Simulation

� Sensitivity of water pressure to parameters 
in the expression for relative permeability:

� Problem dimension: Nx = 18750, Np = 3
� Software: KINSOL and SensKINSOL
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Influence of Relative Permeability Parameters in 
Groundwater Simulation - Results

Sensitivity to a1 Sensitivity to a2 Sensitivity to b2



Atmospheric Event Reconstruction
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Atmospheric Event Reconstruction

� CVODES – for gradient and Hessian-vector products
� KINSOL – for NLP solution

� Problem dimensions: NODE=4096, NNLP=1024
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Current and Future Work

� IDAS (forward and adjoint sensitivity variant of IDA)
— Early 2007

� Automatic generation of derivative information
— Incorporation of AD tools (forward/reverse)

� Improved checkpointing / alternatives to checkpointing
— Storage of integrator decision history



Availability

Web site:
Individual codes download 
SUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team
Peter Brown
Aaron Collier
Keith Grant
Alan Hindmarsh
Steven Lee
Radu Serban
Carol Woodward

Open source BSD license
www.llnl.gov/CASC/sundials

Publications
www.llnl.gov/CASC/nsde



end



Forward Sensitivity Analysis

� For a parameter dependent system

find si=dx/dpi by simultaneously solving the original system 
with the Np sensitivity systems obtained by differentiating 
the original system with respect to each parameter in turn:

� Gradient of a derived function
� Obtain gradients with respect to p for any derived function 
� Computational cost - (1+Np)Nx - increases with Np 
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Adjoint Sensitivity Analysis
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impose final conditions of the form

� index-0 and index-1 DAE

� Hessenberg index-2 DAE


